simshadows

Precalculus Cheatsheet

This cheatsheet generally covers anything that is typically taught before calculus. I also include linear algebra and a bit of complex numbers.

The Discrete Mathematics and Probability and Statistics cheatsheets also contain some precalculus missing from this cheatsheet.

Partial Fraction Decomposition

A proper rational function can be rewritten as a sum of partial fractions.

For each irreducible factor in the denominator, the partial fractions are as follows:

irreducible factor in denominatorpartial fractions(ax+b)kA1ax+b+A2(ax+b)2++Ak(ax+b)k(ax2+bx+c)kA1x+B1ax2+bx+c+A2x+B2(ax2+bx+c)2++Akx+Bk(ax2+bx+c)k \begin{array}{ccccc} \substack{\text{\underline{irreducible factor in denominator}}} &&&& \substack{\text{\underline{partial fractions}}} \\[1ex] \displaystyle {(\memphR{ax + b})}^k & & \Longrightarrow & \quad & %\displaystyle \sum_{n=1}^k{\frac{A_n}{\memphR{(ax + b)}^n}} \displaystyle \frac{A_1}{\memphR{ax + b}} + \frac{A_2}{\parens{\memphR{ax + b}}^2} + \dots + \frac{A_k}{\parens{\memphR{ax + b}}^k} \\[3ex] \displaystyle {(\memphR{ax^2 + bx + c})}^k & & \Longrightarrow & \quad & %\displaystyle \sum_{n=1}^k{\frac{A_n x + B_n}{\memphR{(ax^2 + bx + c)}^n}} \displaystyle \frac{A_1 x + B_1}{\memphR{ax^2 + bx + c}} + \frac{A_2 x + B_2}{\parens{\memphR{ax^2 + bx + c}}^2} + \dots + \frac{A_k x + B_k}{\parens{\memphR{ax^2 + bx + c}}^k} \end{array}

For improper rational functions, you must first convert it to a proper rational function.

Hint: You can use complex numbers to further reduce some factors. Example: (1+x2)=(1+ix)(1ix)\parens{1 + x^2} = \parens{1 + i x} \parens{1 - i x}

Exponentiation and Logarithm Identities

x=ay\displaystyle x = a^y    \ifflogax=y\displaystyle \log_a{x} = y
alogax=x\displaystyle a^{\log_a{x}} = x    \ifflogaax=x\displaystyle \log_a{a^x} = x
logax=loguxloguaChange of Base Law\overset{\text{\textbf{Change of Base Law}}}{\boxed{\log_a{x} = \frac{\log_u{x}}{\log_u{a}}}}
a0=1\displaystyle a^0 = 1\longrightarrowloga1=0\displaystyle \log_a{1} = 0
a1=a\displaystyle a^1 = a\longrightarrowlogaa=1\displaystyle \log_a{a} = 1
a1=1a\displaystyle a^{-1} = \frac{1}{a}\longrightarrowloga1a=1\displaystyle \log_a{\frac{1}{a}} = -1
axay=ax+y\displaystyle a^x a^y = a^{x+y}\longrightarrowlogaxy=logax+logay\displaystyle \log_a{xy} = \log_a{x} + \log_a{y}
axbx=(ab)x\displaystyle a^x b^x = \parens{ab}^x
(ax)y=axy\parens{a^x}^y = a^{xy}\longrightarrowlogaxn=nlogax\displaystyle \log_a{x^n} = n \log_a{x}
1ay=ay\displaystyle \frac{1}{a^y} = a^{-y}loga1y=logay\displaystyle \log_a{\frac{1}{y}} = -\log_a{y}
axay=axy\displaystyle \frac{a^x}{a^y} = a^{x-y}\longrightarrowlogaxy=logaxlogay\displaystyle \log_a{\frac{x}{y}} = \log_a{x} - \log_a{y}
axbx=(ab)x\displaystyle \frac{a^x}{b^x} = \parens{\frac{a}{b}}^x
a12=a\displaystyle a^{\frac{1}{2}} = \sqrt{a}\longrightarrowlogaa=12\displaystyle \log_a{\sqrt{a}} = \frac{1}{2}
a1y=ay\displaystyle a^{\frac{1}{y}} = \sqrt[y]{a}\longrightarrowlogaay=1y\displaystyle \log_a{\sqrt[y]{a}} = \frac{1}{y}
axy=(ay)x\displaystyle a^{\frac{x}{y}} = \parens{\sqrt[y]{a}}^x\longrightarrowloga(ay)x=xy\displaystyle \log_a{\parens{\sqrt[y]{a}}^x} = \frac{x}{y}

Pascal’s Triangle

n=01(00)n=111(10)(11)n=2121(20)(21)(22)n=31331(30)(31)(32)(33)n=414641(40)(41)(42)(43)(44) \begin{matrix} n = 0 && 1 && \binom{0}{0} \\ n = 1 && 1 \quad 1 && \binom{1}{0} \:\: \binom{1}{1} \\ n = 2 && 1 \quad 2 \quad 1 && \binom{2}{0} \:\: \binom{2}{1} \:\: \binom{2}{2} \\ n = 3 && 1 \quad 3 \quad 3 \quad 1 && \binom{3}{0} \:\: \binom{3}{1} \:\: \binom{3}{2} \:\: \binom{3}{3} \\ n = 4 && 1 \quad 4 \quad 6 \quad 4 \quad 1 && \binom{4}{0} \:\: \binom{4}{1} \:\: \binom{4}{2} \:\: \binom{4}{3} \:\: \binom{4}{4} \end{matrix}

Binomial Theorem

(x+y)n=(n0)xny0+(n1)xn1y1++(nn)x0yn=k=0n(nk)xnkyk=k=0n(nk)xkynk\begin{align*} \parens{x + y}^n &= \binom{n}{0} x^n y^0 + \binom{n}{1} x^{n-1} y^1 + \dots + \binom{n}{n} x^0 y^n \\ &= \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k} \end{align*}

See Discrete Mathematics for the binomial coefficient.

Quadratic Formula

x=b±b24ac2aΔ=b24acdiscriminantx x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \qquad\quad \MathOverLabel{\text{\underline{discriminant}}}{\Delta = b^2 - 4ac}

Quadratic Factorization

x2+bx+c=(x+v)(x+u)b=u+vc=uv x^2 + bx + c = \parens{x+v} \parens{x+u} \qquad\quad %\MathOverLabel{\text{\ul{sums and products}}}{ % Too much space. Not worth it. \begin{array}{c} b = u+v \\ c = uv \end{array} %}

Completing The Square

x2+bx+c=(x+[b2])2+c[b2]2 x^2 + b x + c = \parens{x + \xmemphR{\brackets{\memphR{\frac{b}{2}}}}}^2 + c - \xmemphR{\brackets{\memphR{\frac{b}{2}}}^2}

Quadratic/Cubic Identities

a2b2=(a+b)(ab)a3b3=(ab)(a2+ab+b2)a3+b3=(a+b)(a2ab+b2)\begin{align*} a^2 - b^2 &= \parens{a + b} \parens{a - b} \\ a^3 - b^3 &= \parens{a - b} \parens{a^2 + ab + b^2} \\ a^3 + b^3 &= \parens{a + b} \parens{a^2 - ab + b^2} \end{align*}

sin/cos In Terms Of Exponentials

Derived from Euler’s formula.

sinx=eixeix2icosx=eix+eix2 \sin{x} = \frac{e^{ix} - e^{-ix}}{2i} \qquad\quad \cos{x} = \frac{e^{ix} + e^{-ix}}{2}

Hyperbolic Function Exponential Definitions

sinhx=exex2=e2x12ex=1e2x2excoshx=ex+ex2=e2x+12ex=1+e2x2extanhx=sinhxcoshx=exexex+ex=e2x1e2x+1\begin{align*} \sinh{x} &= \frac{e^x - e^{-x}}{2} = \frac{e^{2x} - 1}{2 e^x} = \frac{1 - e^{-2x}}{2 e^{-x}} \\ %\quad \forall x \in \mathbb{R} \\ \cosh{x} &= \frac{e^x + e^{-x}}{2} = \frac{e^{2x} + 1}{2 e^x} = \frac{1 + e^{-2x}}{2 e^{-x}} \\ %\quad \forall x \in \mathbb{R} \\ \tanh{x} &= \frac{\sinh{x}}{\cosh{x}} = \frac{e^x - e^{-x}}{e^x + e^{-x}} = \frac{e^{2x} - 1}{e^{2x} + 1} \end{align*}

Pythagorean Theorem

a2=b2+c2 a^2 = b^2 + c^2

Pythagorean Identities

sin2θ+cos2θ=1tan2θ+1=sec2θ(cosθ0)cot2θ+1=csc2θ(sinθ0)\begin{gather*} \sin^2{\theta} + \cos^2{\theta} = 1 \\ \tan^2{\theta} + 1 = \sec^2{\theta} \quad \parens{\cos{\theta} \ne 0} \\ \cot^2{\theta} + 1 = \csc^2{\theta} \quad \parens{\sin{\theta} \ne 0} \end{gather*}

Complementary Angles

sin1x+cos1x=π2 \sin^{-1}{x} + \cos^{-1}{x} = \frac{\pi}{2}

Compound Angles

sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβsinαsinβtan(α±β)=tanα±tanβ1tanαtanβ\begin{align*} \sin{\parens{\alpha \pm \beta}} &= \sin{\alpha} \cos{\beta } \pm \cos{\alpha} \sin{\beta } \\ \cos{\parens{\alpha \pm \beta}} &= \cos{\alpha} \cos{\beta } \mp \sin{\alpha} \sin{\beta } \\ \tan{\parens{\alpha \pm \beta}} &= \frac{\tan{\alpha} \pm \tan{\beta}}{1 \mp \tan{\alpha} \tan{\beta}} \end{align*}

Double-Angle Formulae

Derived from compound angle formulae.

sin2θ=2sinθcosθcos2θ=cos2θsin2θ=2cos2θ1=cos2θsin2θ=12sin2θsin2θ+cos2θ=1tan2θ=2tanθ1tan2θ\begin{align*} \sin{2 \theta} &= 2 \sin{\theta} \cos{\theta} \\ \cos{2 \theta} &= \cos^2{\theta} - \sin^2{\theta} \, \overbrace{= 2 \cos^2{\theta} - 1} \\ &\phantom{{}= \cos^2{\theta} - \sin^2{\theta}} \, \underbrace{= 1 - 2 \sin^2{\theta}}_{ %\substack{ % \text{simplified using} \\ \sin^2{\theta} + \cos^2{\theta} = 1 %} }\\ \tan{2 \theta} &= \frac{2 \tan{\theta}}{1 - \tan^2{\theta}} \end{align*}

Half-Angle Formulae

Derived from the cos2θ\cos{2 \theta} compound angle formula.

sin2θ=1212cos2θcos2θ=12+12cos2θ \sin^2{\theta} = \frac{1}{2} - \frac{1}{2} \cos{2 \theta} \qquad\enspace \cos^2{\theta} = \frac{1}{2} + \frac{1}{2} \cos{2 \theta}

Products to Sums

Derived by adding compound angle formulae.

2sinAcosB=sin(A+B)+sin(AB)2cosAsinB=sin(A+B)sin(AB)2cosAcosB=cos(A+B)+cos(AB)2sinAsinB=cos(A+B)cos(AB)\begin{alignat*}{8} &2 \sin&&{A} && \cos&&{B} &&= \sin&&{\parens{A+B}} &&+ \sin&&{\parens{A-B}} \\ &2 \cos&&{A} && \sin&&{B} &&= \sin&&{\parens{A+B}} &&- \sin&&{\parens{A-B}} \\ &2 \cos&&{A} && \cos&&{B} &&= \cos&&{\parens{A+B}} &&+ \cos&&{\parens{A-B}} \\ -&2 \sin&&{A} && \sin&&{B} &&= \cos&&{\parens{A+B}} &&- \cos&&{\parens{A-B}} \end{alignat*}

Sums to Products

Derived by reversing Products to Sums.

sinS+sinT=+2sin(S+T2)cos(ST2)sinSsinT=+2cos(S+T2)sin(ST2)cosS+cosT=+2cos(S+T2)cos(ST2)cosScosT=2sin(S+T2)sin(ST2)\begin{alignat*}{4} \sin{S} + \sin{T} &= \phantom{+} 2 \sin&&{\parens{\frac{S+T}{2}}} \cos&&{\parens{\frac{S-T}{2}}} \\ \sin{S} - \sin{T} &= \phantom{+} 2 \cos&&{\parens{\frac{S+T}{2}}} \sin&&{\parens{\frac{S-T}{2}}} \\ \cos{S} + \cos{T} &= \phantom{+} 2 \cos&&{\parens{\frac{S+T}{2}}} \cos&&{\parens{\frac{S-T}{2}}} \\ \cos{S} - \cos{T} &= - 2 \sin&&{\parens{\frac{S+T}{2}}} \sin&&{\parens{\frac{S-T}{2}}} \end{alignat*}

Hyperbolic: Difference of Squares

cosh2xsinh2x=11tanh2x=sech2xcoth2x1=csch2x\begin{gather*} \cosh^2{x} - \sinh^2{x} = 1 \\ 1 - \tanh^2{x} = \sech^2{x} \\ \coth^2{x} - 1 = \csch^2{x} \end{gather*}

Hyperbolic: Sum and Difference Formulae

sinh(α±β)=sinhαcoshβ±coshαsinhβcosh(α±β)=coshαcoshβ±sinhαsinhβtanh(α±β)=tanhα±tanhβ1±tanhαtanhβ\begin{align*} \sinh{\parens{\alpha \pm \beta}} &= \sinh{\alpha} \cosh{\beta } \pm \cosh{\alpha} \sinh{\beta } \\ \cosh{\parens{\alpha \pm \beta}} &= \cosh{\alpha} \cosh{\beta } \pm \sinh{\alpha} \sinh{\beta } \\ \tanh{\parens{\alpha \pm \beta}} &= \frac{\tanh{\alpha} \pm \tanh{\beta}}{1 \pm \tanh{\alpha} \tanh{\beta}} \end{align*}

Hyperbolic: Double-Angle Formulae

sinh2x=2sinhxcoshxcosh2x=cosh2x+sinh2xtanh2x=2tanhx1+tanh2x\begin{align*} \sinh{2x} &= 2 \sinh{x} \cosh{x} \\ \cosh{2x} &= \cosh^2{x} + \sinh^2{x} \\ \tanh{2x} &= \frac{2 \tanh{x}}{1 + \tanh^2{x}} \end{align*}

Arithmetic Progression and Series

an=a1+(n1)dSn=k=1nak=n2[2a1+(n1)d]=n2[a1an]\begin{gather*} a_n = a_1 + \parens{n - 1} d \\ S_n = \sum_{k = 1}^{n} a_k = \frac{n}{2} \brackets{2 a_1 + \parens{n - 1} d} = \frac{n}{2} \brackets{a_1 - a_n} \end{gather*}

Imaginary Unit

i2=1 i^2 = -1

Euler’s Formula

eiθ=cosθ+isinθ,θR e^{i \theta} = \cos{\theta} + i \sin{\theta}, \qquad \forall \theta \in \Reals

Complex Number Representation

a,b,r,θRz=a+ib(Rectangular Form)=r(cosθ+isinθ)(Polar Form)=reiθ(Exponential Form)=rθ(Steinmetz Notation)=rcisθ(cis Form) [rarely used]\begin{gather*} a, b, r, \theta \in \mathbb{R} \\ \begin{alignedat}{2} z &= a + ib & \qquad & \text{(Rectangular Form)} \\ &= r(\cos{\theta} + i \sin{\theta}) & \qquad & \text{(Polar Form)} \\ &= r e^{i \theta} & \qquad & \text{(Exponential Form)} \\ &= r \phase{\theta} & \qquad & \text{(Steinmetz Notation)} \\ &\mathbin{\Exn{=}} \Exn{r \cis{\theta}} & \qquad & \Exn{\text{(cis Form) \footnotesize [rarely used]}} \end{alignedat}% \end{gather*}

Re(z)=a=rcosθa(Real Part)Im(z)=b=rsinθba(Imaginary Part)z=r=a2+b2ba(Modulus)arg(z)=θ=atan2(b,a)(Argument)\begin{alignat*}{3} \MyRe{(z)} &= a &&= r \cos{\theta} \phantom{\frac{}{a}} & \qquad & \text{(Real Part)} \\ \MyIm{(z)} &= b &&= r \sin{\theta} \phantom{\frac{b}{a}} & \qquad & \text{(Imaginary Part)} \\ \abs{z} &= r &&= \sqrt{a^2 + b^2} \phantom{\frac{b}{a}} & \qquad & \text{(Modulus)} \\ \arg{(z)} &= \theta &&= \atantwo{\parens{b, a}} & \qquad & \text{(Argument)} \end{alignat*}

Complex Conjugate

a+ib=(a+ib)=aib \complexconjugate{a + ib} = \parens{a + ib}^* = a - ib

Useful identities:

zz=z2(a+ib)(a+ib)=(a+ib)(aib)=a2+b2\begin{gather*} z \complexconjugate{z} = \abs{z}^2 \\ \parens{a + ib} \complexconjugate{\parens{a + ib}} = \parens{a + ib} \parens{a - ib} = a^2 + b^2 \end{gather*}

Dot Product / Scalar Product

In Rn\Reals^n:

ab=a1b1++anbn=k=0nakbk \mathbf{a} \cdot \mathbf{b} = a_1 b_1 + \cdots + a_n b_n = \sum_{k=0}^n{a_k b_k}

In R2\Reals^2 or R3\Reals^3:

ab=abcosθ,θ[0,π] \mathbf{a} \cdot \mathbf{b} = \abs{\mathbf{a}} \abs{\mathbf{b}} \cos{\theta} ,\qquad \theta \in [0, \pi]

Useful geometric properties:

  • aa=a2\mathbf{a} \cdot \mathbf{a} = \abs{a}^2, hence a=aa\abs{\mathbf{a}} = \sqrt{\mathbf{a} \cdot \mathbf{a}}.
  • Vectors a,bRn\mathbf{a}, \mathbf{b} \in \mathbb{R}^n are orthogonal if ab=0\mathbf{a} \cdot \mathbf{b} = 0.

Cross Product / Vector Product

The cross product is only defined in R3\mathbb{R}^3.

(a1a2a3)×(b1b2b3)=(a2b3a3b2a3b1a1b3a1b2a2b1) \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2 b_3 - a_3 b_2 \\ a_3 b_1 - a_1 b_3 \\ a_1 b_2 - a_2 b_1 \end{pmatrix}

Calculation using determinants:

(a1a2a3)×(b1b2b3)=e1e2e3a1a2a3b1b2b3=e1a2a3b2b3e2a1a3b1b3+e3a1a2b1b2=e1(a2b3a3b2)e2(a1b3a3b1)+e3(a1b2a2b1)\begin{gather*} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{vmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} \\ = \mathbf{e}_1 \begin{vmatrix} \memphR{a_2} & \memphB{a_3} \\ \memphB{b_2} & \memphR{b_3} \end{vmatrix} - \mathbf{e}_2 \begin{vmatrix} \memphR{a_1} & \memphB{a_3} \\ \memphB{b_1} & \memphR{b_3} \end{vmatrix} + \mathbf{e}_3 \begin{vmatrix} \memphR{a_1} & \memphB{a_2} \\ \memphB{b_1} & \memphR{b_2} \end{vmatrix} \\ \begin{aligned} = \mathbf{e}_1 &\parens{\memphR{a_2 b_3} - \memphB{a_3 b_2}} \\ &- \mathbf{e}_2 \parens{\memphR{a_1 b_3} - \memphB{a_3 b_1}} \\ &+ \mathbf{e}_3 \parens{\memphR{a_1 b_2} - \memphB{a_2 b_1}} \end{aligned} \end{gather*}

Useful geometric properties:

  • Vector a×b\mathbf{a} \times \mathbf{b} is orthogonal to a\mathbf{a} and b\mathbf{b}.
  • a×b=absinθ=area of a parallelogram\abs{\mathbf{a} \times \mathbf{b}} = \abs{\mathbf{a}} \abs{\mathbf{b}} \sin{\theta} = \text{area of a parallelogram}

Cramer’s Rule

Consider the following linear system with n×nn \times n invertible matrix AA:

Ax=b,AMnn, xRn, bRn A \mathbf{x} = \mathbf{b} ,\qquad A \in M_{nn},\ \mathbf{x} \in \mathbb{R}^n,\ \mathbf{b} \in \mathbb{R}^n

The system has a unique solution:

xk=det(Bk)det(A),k=1,,n, x_k = \frac{\det{\parens{B_k}}}{\det{\parens{A}}} ,\qquad \forall k = 1, \dots, n,

where BkB_k is the matrix obtained from AA by replacing the kth\Nth{k}{th} column with the vector b\mathbf{b}.

Cramer’s Rule, 2×22 \times 2 Matrix

{a11x+a12y=b1a21x+a22y=b2[a11a12a21a22][xy]=[b1b2] \begin{dcases} \xmemphB{a_{11}} x + \xmemphB{a_{12}} y = \xmemphR{b_1} \\ \xmemphB{a_{21}} x + \xmemphB{a_{22}} y = \xmemphR{b_2} \end{dcases} \quad \Rightarrow \quad \xmemphB{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} } \begin{bmatrix} x \\ y \end{bmatrix} = \xmemphR{ \begin{bmatrix} b_1 \\ b_2 \end{bmatrix} }

x=b1a12b2a22a11a12a21a22,y=a11b1a21b2a11a12a21a22 x = \frac{ \xmemphB{ \begin{vmatrix} \xmemphR{b_1} & a_{12} \\ \xmemphR{b_2} & a_{22} \end{vmatrix} } }{ \xmemphB{ \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} } } ,\qquad y = \frac{ \xmemphB{ \begin{vmatrix} a_{11} & \xmemphR{b_1} \\ a_{21} & \xmemphR{b_2} \end{vmatrix} } }{ \xmemphB{ \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} } }

Cramer’s Rule, 3×33 \times 3 Matrix

{a11x+a12y+a13z=b1a21x+a22y+a23z=b2a31x+a32y+a33z=b3 \begin{dcases} \xmemphB{a_{11}} x + \xmemphB{a_{12}} y + \xmemphB{a_{13}} z = \xmemphR{b_1} \\ \xmemphB{a_{21}} x + \xmemphB{a_{22}} y + \xmemphB{a_{23}} z = \xmemphR{b_2} \\ \xmemphB{a_{31}} x + \xmemphB{a_{32}} y + \xmemphB{a_{33}} z = \xmemphR{b_3} \end{dcases}

[a11a12a13a21a22a23a31a32a33][xyz]=[b1b2b3] \xmemphB{ \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} } \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \xmemphR{ \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} }

x=b1a12a13b2a22a23b3a32a33a11a12a13a21a22a23a31a32a33,y=a11b1a13a21b2a23a31b3a33a11a12a13a21a22a23a31a32a33, x = \frac{ \xmemphB{ \begin{vmatrix} \xmemphR{b_1} & a_{12} & a_{13} \\ \xmemphR{b_2} & a_{22} & a_{23} \\ \xmemphR{b_3} & a_{32} & a_{33} \end{vmatrix} } }{ \xmemphB{ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} } } ,\qquad y = \frac{ \xmemphB{ \begin{vmatrix} a_{11} & \xmemphR{b_1} & a_{13} \\ a_{21} & \xmemphR{b_2} & a_{23} \\ a_{31} & \xmemphR{b_3} & a_{33} \end{vmatrix} } }{ \xmemphB{ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} } } ,

z=a11a12b1a21a22b2a31a32b3a11a12a13a21a22a23a31a32a33 z = \frac{ \xmemphB{ \begin{vmatrix} a_{11} & a_{12} & \xmemphR{b_1} \\ a_{21} & a_{22} & \xmemphR{b_2} \\ a_{31} & a_{32} & \xmemphR{b_3} \end{vmatrix} } }{ \xmemphB{ \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} } }

Symbols and Units

NameSymbolDecimal Multiplier
yottaY\si{\yotta\sinounit}1024{10}^{24}10008{1000}^{8}1  000  000  000  000  000  000  000  0001\;000\;000\;000\;000\;000\;000\;000\;000
zettaZ\si{\zetta\sinounit}1021{10}^{21}10007{1000}^{7}0  001  000  000  000  000  000  000  000\phantom{0\;00}1\;000\;000\;000\;000\;000\;000\;000
exaE\si{\exa\sinounit}1018{10}^{18}10006{1000}^{6}0  000  001  000  000  000  000  000  000\phantom{0\;000\;00}1\;000\;000\;000\;000\;000\;000
petaP\si{\peta\sinounit}1015{10}^{15}10005{1000}^{5}0  000  000  001  000  000  000  000  000\phantom{0\;000\;000\;00}1\;000\;000\;000\;000\;000
teraT\si{\tera\sinounit}1012{10}^{12}10004{1000}^{4}0  000  000  000  001  000  000  000  000\phantom{0\;000\;000\;000\;00}1\;000\;000\;000\;000
gigaG\si{\giga\sinounit}109{10}^{9}10003{1000}^{3}0  000  000  000  000  001  000  000  000\phantom{0\;000\;000\;000\;000\;00}1\;000\;000\;000
megaM\si{\mega\sinounit}106{10}^{6}10002{1000}^{2}0  000  000  000  000  000  001  000  000\phantom{0\;000\;000\;000\;000\;000\;00}1\;000\;000
kilok\si{\kilo\sinounit}103{10}^{3}10001{1000}^{1}0  000  000  000  000  000  000  001  000\phantom{0\;000\;000\;000\;000\;000\;000\;00}1\;000
hectoh\si{\hecto\sinounit}102{10}^{2}10002/3{1000}^{2/3}0  000  000  000  000  000  000  000  100\phantom{0\;000\;000\;000\;000\;000\;000\;000}\;100
decada\si{\deca\sinounit}101{10}^{1}10001/3{1000}^{1/3}0  000  000  000  000  000  000  000  010\phantom{0\;000\;000\;000\;000\;000\;000\;000\;0}10
100{10}^{0}10000{1000}^{0}0  000  000  000  000  000  000  000  001\phantom{0\;000\;000\;000\;000\;000\;000\;000\;00}1
decid\si{\deci\sinounit}101{10}^{-1}10001/3{1000}^{-1/3}0  000  000  000  000  000  000  000  000.1\phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.1
centic\si{\centi\sinounit}102{10}^{-2}10002/3{1000}^{-2/3}0  000  000  000  000  000  000  000  000.01\phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.01
millim\si{\milli\sinounit}103{10}^{-3}10001{1000}^{-1}0  000  000  000  000  000  000  000  000.001\phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.001
microμ\si{\micro\sinounit}106{10}^{-6}10002{1000}^{-2}0  000  000  000  000  000  000  000  000.000  001\phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;001
nanon\si{\nano\sinounit}109{10}^{-9}10003{1000}^{-3}0  000  000  000  000  000  000  000  000.000  000  001\phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;000\;001
picop\si{\pico\sinounit}1012{10}^{-12}10004{1000}^{-4}0  000  000  000  000  000  000  000  000.000  000  000  001\phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;000\;000\;001
femtof\si{\femto\sinounit}1015{10}^{-15}10005{1000}^{-5}0  000  000  000  000  000  000  000  000.000  000  000  000  001\phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;000\;000\;000\;001
attoa\si{\atto\sinounit}1018{10}^{-18}10006{1000}^{-6}0  000  000  000  000  000  000  000  000.000  000  000  000  000  001\phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;000\;000\;000\;000\;001
zeptoz\si{\zepto\sinounit}1021{10}^{-21}10007{1000}^{-7}0  000  000  000  000  000  000  000  000.000  000  000  000  000  000  001\phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;000\;000\;000\;000\;000\;001
yoctoy\si{\yocto\sinounit}1024{10}^{-24}10008{1000}^{-8}0  000  000  000  000  000  000  000  000.000  000  000  000  000  000  000  001\phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;000\;000\;000\;000\;000\;000\;001
A\myAlphaα\alphaAlpha
B\myBetaβ\betaBeta
Γ\Gammaγ\gammaGamma
Δ\Deltaδ\deltaDelta
E\myEpsilonϵ\epsilonε\varepsilonEpsilon
Z\myZetaζ\zetaZeta
H\myEtaη\etaEta
Θ\Thetaθ\thetaϑ\varthetaTheta
I\myIotaι\iotaIota
K\myKappaκ\kappaϰ\varkappaKappa
Λ\Lambdaλ\lambdaLambda
M\myMuμ\muMu
N\myNuν\nuNu
Ξ\Xiξ\xiXi
O\myOmicronο\myomicronOmicron
Π\Piπ\piϖ\varpiPi
P\myRhoρ\rhoϱ\varrhoRho
Σ\Sigmaσ\sigmaς\varsigmaSigma
T\myTauτ\tauTau
Υ\Upsilonυ\upsilonUpsilon
Φ\Phiϕ\phiφ\varphiPhi
X\myChiχ\chiChi
Ψ\Psiψ\psiPsi
Ω\Omegaω\omegaOmega
F\myDigammaϝ\digammaDigamma

Appendix: Extended Cheatsheet

Basic Number Sets

N={1,2,3,}Natural NumbersxZ={,2,1,0,1,2,}Integersx \MathOverLabel{\text{\footnotesize{Natural Numbers}}}{ \myNaturalsSet = \braces{1, 2, 3, \dots} } \qquad\,\, \MathOverLabel{\text{\footnotesize{Integers}}}{ \myIntegerSet = \braces{\dots, -2, -1, 0, 1, 2, \dots} }

QRational NumbersxRReal NumbersxCComplex Numbersx \MathOverLabel{\text{\footnotesize{Rational Numbers}}}{\myRationalsSet} \qquad \MathOverLabel{\text{\footnotesize{Real Numbers}}}{\myReals} \qquad \MathOverLabel{\text{\footnotesize{Complex Numbers}}}{\myComplex}

Polynomial

A function f:RRf : \myReals \to \myReals is a polynomial of degree nn if:

f(x)=anxn+an1xn1++a2x2+a1x+a0xR\begin{gather*} f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0 \\ \forall x \in \myReals \end{gather*}

where:

degree:n=0,1,2,3,n = 0, 1, 2, 3, \dots
coefficients:a0,a1,,an1,anRa_0, a_1, \dots, a_{n-1}, a_n \in \myReals
leading coefficient:an0a_n \ne 0

The most common polynomials are named:

NameForm
Degree 0constantaa
Degree 1linearax+ba x + b
Degree 2quadraticax2+bx+ca x^2 + b x + c
Degree 3cubicax3+bx2+cx+da x^3 + b x^2 + c x + d
Degree 4quarticax4+bx3+cx2+dx+ea x^4 + b x^3 + c x^2 + d x + e

A monic polynomial is one where the leading coefficient is 11.

Rational Function

A function ff is a rational function if it can be written in the form:

f(x)=P(x)Q(x) f(x) = \frac{P(x)}{Q(x)}

where PP and QQ are polynomial functions, and QQ is not the zero function.

The domain of ff excludes zeroes of the denominator:

Dom(f)={xR:Q(x)0} \dom{(f)} = \braces{x \in \myReals : Q(x) \ne 0}

The fundamental theorem of calculus is so useful that you should just know it intuitively.

First Fundamental Theorem of Calculus

Let ff be a continuous real-valued function defined on [a,b][a, b], and let FF be defined by:

F:[a,b]RF(x)=axf(t)dt. F : [a, b] \to \myReals \qquad F(x) = \int_a^x{f(t) \,\diff{t}} .

FF is continuous on [a,b][a, b], differentiable on (a,b)(a, b), and has a derivative FF' given by:

F(x)=f(x)x(a,b). F'(x) = f(x) \qquad \forall x \in (a, b) .

Second Fundamental Theorem of Calculus

Let FF be a real-valued function on [a,b][a, b], and FF be an antiderivative of ff on [a,b][a, b]. Then:

abf(t)dt=F(b)F(a) \int_a^b{f(t) \,\diff{t}} = F(b) - F(a)

TODO: Look into this more. I’m not 100% certain on details such as whether the second fundamental theorem requires ff to be continuous, and whether or not ff being Riemann integrable is significant here.

Appendix: Discussion

Completing the Square

Suppose we have a quadratic function:

f(x)=ax2+bx+c f(x) = a x^2 + b x + c

We want to express the same quadratic in the form:

f(x)=A(x+B)2+C f(x) = A(x + B)^2 + C

We can expand this form, then equate coefficients:

f(x)=Ax2+2ABx+AB2+C f(x) = A x^2 + 2ABx + A B^2 + C

A=a2AB=bAB2+C=c A = a \qquad 2AB = b \qquad A B^2 + C = c

Solving for AA, BB, and CC, we get our function:

f(x)=a(x+[b2a])2+[cb24a] f(x) = a \parens{x + \brackets{\frac{b}{2a}}}^2 + \brackets{c - \frac{b^2}{4a}}

Thus, we have our general form for completing the square.

However, it can be a bit unwieldy. If we instead assume we have a monic (i.e. a=1a=1), then:

f(x)=(x+[b2])2+c[b2]2 f(x) = \parens{x + \xmemphR{\brackets{\frac{b}{2}}}}^2 + c - \xmemphP{\brackets{\frac{b}{2}}^2}

This form is easier for me to memorize since you just remember where b2\memphR{\frac{b}{2}} and its square appears.

Though, if one forgets the square, you can guess the form of the outside by expanding (x+b2)2\parens{x + \memphR{\frac{b}{2}}}^2:

f(x)=(x+[b2])2+c+something=(x2+2[b2]+[b2]2)+c+something\begin{align*} f(x) &= \parens{x + \xmemphR{\brackets{\frac{b}{2}}}}^2 + c + \text{something} \\ &= \parens{x^2 + 2 \xmemphR{\brackets{\frac{b}{2}}} + \xmemphP{\brackets{\frac{b}{2}}^2}} + c + \text{something} \end{align*}

This something must be such that the constant doesn’t change:

f(x)=(x2+2[b2]+[b2]2)+c[b2]2 f(x) = \parens{x^2 + 2 \xmemphR{\brackets{\frac{b}{2}}} + \xmemphP{\brackets{\frac{b}{2}}^2}} + c - \xmemphP{\brackets{\frac{b}{2}}^2}