Precalculus Cheatsheet This cheatsheet generally covers anything that is typically taught before calculus. I also include linear algebra and a bit of complex numbers.
The Discrete Mathematics and Probability and Statistics cheatsheets also contain some precalculus missing from this cheatsheet.
Partial Fraction Decomposition
A proper rational function can be rewritten as a sum of partial fractions .
For each irreducible factor in the denominator, the partial fractions are as follows:
For improper rational functions , you must first convert it to a proper rational function .
Hint: You can use complex numbers to further reduce some factors. Example: ( 1 + x 2 ) = ( 1 + i x ) ( 1 − i x ) \parens{1 + x^2} = \parens{1 + i x} \parens{1 - i x} ( 1 + x 2 ) = ( 1 + i x ) ( 1 − i x )
Exponentiation and Logarithm Identities
x = a y \displaystyle x = a^y x = a y ⟺ \iff ⟺ log a x = y \displaystyle \log_a{x} = y log a x = y a log a x = x \displaystyle a^{\log_a{x}} = x a l o g a x = x ⟺ \iff ⟺ log a a x = x \displaystyle \log_a{a^x} = x log a a x = x log a x = log u x log u a Change of Base Law \overset{\text{\textbf{Change of Base Law}}}{\boxed{\log_a{x} = \frac{\log_u{x}}{\log_u{a}}}} log a x = log u a log u x Change of Base Law a 0 = 1 \displaystyle a^0 = 1 a 0 = 1 ⟶ \longrightarrow ⟶ log a 1 = 0 \displaystyle \log_a{1} = 0 log a 1 = 0 a 1 = a \displaystyle a^1 = a a 1 = a ⟶ \longrightarrow ⟶ log a a = 1 \displaystyle \log_a{a} = 1 log a a = 1 a − 1 = 1 a \displaystyle a^{-1} = \frac{1}{a} a − 1 = a 1 ⟶ \longrightarrow ⟶ log a 1 a = − 1 \displaystyle \log_a{\frac{1}{a}} = -1 log a a 1 = − 1 a x a y = a x + y \displaystyle a^x a^y = a^{x+y} a x a y = a x + y ⟶ \longrightarrow ⟶ log a x y = log a x + log a y \displaystyle \log_a{xy} = \log_a{x} + \log_a{y} log a x y = log a x + log a y a x b x = ( a b ) x \displaystyle a^x b^x = \parens{ab}^x a x b x = ( ab ) x ( a x ) y = a x y \parens{a^x}^y = a^{xy} ( a x ) y = a x y ⟶ \longrightarrow ⟶ log a x n = n log a x \displaystyle \log_a{x^n} = n \log_a{x} log a x n = n log a x 1 a y = a − y \displaystyle \frac{1}{a^y} = a^{-y} a y 1 = a − y log a 1 y = − log a y \displaystyle \log_a{\frac{1}{y}} = -\log_a{y} log a y 1 = − log a y a x a y = a x − y \displaystyle \frac{a^x}{a^y} = a^{x-y} a y a x = a x − y ⟶ \longrightarrow ⟶ log a x y = log a x − log a y \displaystyle \log_a{\frac{x}{y}} = \log_a{x} - \log_a{y} log a y x = log a x − log a y a x b x = ( a b ) x \displaystyle \frac{a^x}{b^x} = \parens{\frac{a}{b}}^x b x a x = ( b a ) x a 1 2 = a \displaystyle a^{\frac{1}{2}} = \sqrt{a} a 2 1 = a ⟶ \longrightarrow ⟶ log a a = 1 2 \displaystyle \log_a{\sqrt{a}} = \frac{1}{2} log a a = 2 1 a 1 y = a y \displaystyle a^{\frac{1}{y}} = \sqrt[y]{a} a y 1 = y a ⟶ \longrightarrow ⟶ log a a y = 1 y \displaystyle \log_a{\sqrt[y]{a}} = \frac{1}{y} log a y a = y 1 a x y = ( a y ) x \displaystyle a^{\frac{x}{y}} = \parens{\sqrt[y]{a}}^x a y x = ( y a ) x ⟶ \longrightarrow ⟶ log a ( a y ) x = x y \displaystyle \log_a{\parens{\sqrt[y]{a}}^x} = \frac{x}{y} log a ( y a ) x = y x
Quadratic Formula
Quadratic Factorization
Completing The Square
Quadratic/Cubic Identities
sin/cos In Terms Of Exponentials
Derived from Euler’s formula.
Hyperbolic Function Exponential Definitions
Pythagorean Theorem
Pythagorean Identities
Complementary Angles
Compound Angles
Double-Angle Formulae
Derived from compound angle formulae.
Half-Angle Formulae
Derived from the cos 2 θ \cos{2 \theta} cos 2 θ compound angle formula.
Products to Sums
Derived by adding compound angle formulae.
Sums to Products
Derived by reversing Products to Sums.
Hyperbolic: Difference of Squares
Hyperbolic: Sum and Difference Formulae
Hyperbolic: Double-Angle Formulae
Arithmetic Progression and Series
Imaginary Unit
Euler’s Formula
Complex Number Representation
Complex Conjugate
Useful identities:
Dot Product / Scalar Product
In R n \Reals^n R n :
In R 2 \Reals^2 R 2 or R 3 \Reals^3 R 3 :
Useful geometric properties:
a ⋅ a = ∣ a ∣ 2 \mathbf{a} \cdot \mathbf{a} = \abs{a}^2 a ⋅ a = ∣ a ∣ 2 , hence ∣ a ∣ = a ⋅ a \abs{\mathbf{a}} = \sqrt{\mathbf{a} \cdot \mathbf{a}} ∣ a ∣ = a ⋅ a .
Vectors a , b ∈ R n \mathbf{a}, \mathbf{b} \in \mathbb{R}^n a , b ∈ R n are orthogonal if a ⋅ b = 0 \mathbf{a} \cdot \mathbf{b} = 0 a ⋅ b = 0 .
Cross Product / Vector Product
The cross product is only defined in R 3 \mathbb{R}^3 R 3 .
Calculation using determinants:
Useful geometric properties:
Vector a × b \mathbf{a} \times \mathbf{b} a × b is orthogonal to a \mathbf{a} a and b \mathbf{b} b .
∣ a × b ∣ = ∣ a ∣ ∣ b ∣ sin θ = area of a parallelogram \abs{\mathbf{a} \times \mathbf{b}} = \abs{\mathbf{a}} \abs{\mathbf{b}} \sin{\theta} = \text{area of a parallelogram} ∣ a × b ∣ = ∣ a ∣ ∣ b ∣ sin θ = area of a parallelogram
Cramer’s Rule
Consider the following linear system with n × n n \times n n × n invertible matrix A A A :
The system has a unique solution:
where B k B_k B k is the matrix obtained from A A A by replacing the k th \Nth{k}{th} k th column with the vector b \mathbf{b} b .
Cramer’s Rule, 2 × 2 2 \times 2 2 × 2 Matrix
Cramer’s Rule, 3 × 3 3 \times 3 3 × 3 Matrix
Symbols and Units
Name Symbol Decimal Multiplier yotta Y \si{\yotta\sinounit} Y 10 24 {10}^{24} 10 24 1000 8 {1000}^{8} 1000 8 1 000 000 000 000 000 000 000 000 1\;000\;000\;000\;000\;000\;000\;000\;000 1 000 000 000 000 000 000 000 000 zetta Z \si{\zetta\sinounit} Z 10 21 {10}^{21} 10 21 1000 7 {1000}^{7} 1000 7 0 00 1 000 000 000 000 000 000 000 \phantom{0\;00}1\;000\;000\;000\;000\;000\;000\;000 0 00 1 000 000 000 000 000 000 000 exa E \si{\exa\sinounit} E 10 18 {10}^{18} 10 18 1000 6 {1000}^{6} 1000 6 0 000 00 1 000 000 000 000 000 000 \phantom{0\;000\;00}1\;000\;000\;000\;000\;000\;000 0 000 00 1 000 000 000 000 000 000 peta P \si{\peta\sinounit} P 10 15 {10}^{15} 10 15 1000 5 {1000}^{5} 1000 5 0 000 000 00 1 000 000 000 000 000 \phantom{0\;000\;000\;00}1\;000\;000\;000\;000\;000 0 000 000 00 1 000 000 000 000 000 tera T \si{\tera\sinounit} T 10 12 {10}^{12} 10 12 1000 4 {1000}^{4} 1000 4 0 000 000 000 00 1 000 000 000 000 \phantom{0\;000\;000\;000\;00}1\;000\;000\;000\;000 0 000 000 000 00 1 000 000 000 000 giga G \si{\giga\sinounit} G 10 9 {10}^{9} 10 9 1000 3 {1000}^{3} 1000 3 0 000 000 000 000 00 1 000 000 000 \phantom{0\;000\;000\;000\;000\;00}1\;000\;000\;000 0 000 000 000 000 00 1 000 000 000 mega M \si{\mega\sinounit} M 10 6 {10}^{6} 10 6 1000 2 {1000}^{2} 1000 2 0 000 000 000 000 000 00 1 000 000 \phantom{0\;000\;000\;000\;000\;000\;00}1\;000\;000 0 000 000 000 000 000 00 1 000 000 kilo k \si{\kilo\sinounit} k 10 3 {10}^{3} 10 3 1000 1 {1000}^{1} 1000 1 0 000 000 000 000 000 000 00 1 000 \phantom{0\;000\;000\;000\;000\;000\;000\;00}1\;000 0 000 000 000 000 000 000 00 1 000 hecto h \si{\hecto\sinounit} h 10 2 {10}^{2} 10 2 1000 2 / 3 {1000}^{2/3} 1000 2/3 0 000 000 000 000 000 000 000 100 \phantom{0\;000\;000\;000\;000\;000\;000\;000}\;100 0 000 000 000 000 000 000 000 100 deca da \si{\deca\sinounit} da 10 1 {10}^{1} 10 1 1000 1 / 3 {1000}^{1/3} 1000 1/3 0 000 000 000 000 000 000 000 0 10 \phantom{0\;000\;000\;000\;000\;000\;000\;000\;0}10 0 000 000 000 000 000 000 000 0 10 10 0 {10}^{0} 10 0 1000 0 {1000}^{0} 1000 0 0 000 000 000 000 000 000 000 00 1 \phantom{0\;000\;000\;000\;000\;000\;000\;000\;00}1 0 000 000 000 000 000 000 000 00 1 deci d \si{\deci\sinounit} d 10 − 1 {10}^{-1} 10 − 1 1000 − 1 / 3 {1000}^{-1/3} 1000 − 1/3 0 000 000 000 000 000 000 000 00 0.1 \phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.1 0 000 000 000 000 000 000 000 00 0.1 centi c \si{\centi\sinounit} c 10 − 2 {10}^{-2} 10 − 2 1000 − 2 / 3 {1000}^{-2/3} 1000 − 2/3 0 000 000 000 000 000 000 000 00 0.01 \phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.01 0 000 000 000 000 000 000 000 00 0.01 milli m \si{\milli\sinounit} m 10 − 3 {10}^{-3} 10 − 3 1000 − 1 {1000}^{-1} 1000 − 1 0 000 000 000 000 000 000 000 00 0.001 \phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.001 0 000 000 000 000 000 000 000 00 0.001 micro μ \si{\micro\sinounit} μ 10 − 6 {10}^{-6} 10 − 6 1000 − 2 {1000}^{-2} 1000 − 2 0 000 000 000 000 000 000 000 00 0.000 001 \phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;001 0 000 000 000 000 000 000 000 00 0.000 001 nano n \si{\nano\sinounit} n 10 − 9 {10}^{-9} 10 − 9 1000 − 3 {1000}^{-3} 1000 − 3 0 000 000 000 000 000 000 000 00 0.000 000 001 \phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;000\;001 0 000 000 000 000 000 000 000 00 0.000 000 001 pico p \si{\pico\sinounit} p 10 − 12 {10}^{-12} 10 − 12 1000 − 4 {1000}^{-4} 1000 − 4 0 000 000 000 000 000 000 000 00 0.000 000 000 001 \phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;000\;000\;001 0 000 000 000 000 000 000 000 00 0.000 000 000 001 femto f \si{\femto\sinounit} f 10 − 15 {10}^{-15} 10 − 15 1000 − 5 {1000}^{-5} 1000 − 5 0 000 000 000 000 000 000 000 00 0.000 000 000 000 001 \phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;000\;000\;000\;001 0 000 000 000 000 000 000 000 00 0.000 000 000 000 001 atto a \si{\atto\sinounit} a 10 − 18 {10}^{-18} 10 − 18 1000 − 6 {1000}^{-6} 1000 − 6 0 000 000 000 000 000 000 000 00 0.000 000 000 000 000 001 \phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;000\;000\;000\;000\;001 0 000 000 000 000 000 000 000 00 0.000 000 000 000 000 001 zepto z \si{\zepto\sinounit} z 10 − 21 {10}^{-21} 10 − 21 1000 − 7 {1000}^{-7} 1000 − 7 0 000 000 000 000 000 000 000 00 0.000 000 000 000 000 000 001 \phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;000\;000\;000\;000\;000\;001 0 000 000 000 000 000 000 000 00 0.000 000 000 000 000 000 001 yocto y \si{\yocto\sinounit} y 10 − 24 {10}^{-24} 10 − 24 1000 − 8 {1000}^{-8} 1000 − 8 0 000 000 000 000 000 000 000 00 0.000 000 000 000 000 000 000 001 \phantom{0\;000\;000\;000\;000\;000\;000\;000\;00} 0.000\;000\;000\;000\;000\;000\;000\;001 0 000 000 000 000 000 000 000 00 0.000 000 000 000 000 000 000 001
A \myAlpha A α \alpha α Alpha B \myBeta B β \beta β Beta Γ \Gamma Γ γ \gamma γ Gamma Δ \Delta Δ δ \delta δ Delta E \myEpsilon E ϵ \epsilon ϵ ε \varepsilon ε Epsilon Z \myZeta Z ζ \zeta ζ Zeta H \myEta H η \eta η Eta Θ \Theta Θ θ \theta θ ϑ \vartheta ϑ Theta I \myIota I ι \iota ι Iota K \myKappa K κ \kappa κ ϰ \varkappa ϰ Kappa Λ \Lambda Λ λ \lambda λ Lambda M \myMu M μ \mu μ Mu N \myNu N ν \nu ν Nu Ξ \Xi Ξ ξ \xi ξ Xi O \myOmicron O ο \myomicron ο Omicron Π \Pi Π π \pi π ϖ \varpi ϖ Pi P \myRho P ρ \rho ρ ϱ \varrho ϱ Rho Σ \Sigma Σ σ \sigma σ ς \varsigma ς Sigma T \myTau T τ \tau τ Tau Υ \Upsilon Υ υ \upsilon υ Upsilon Φ \Phi Φ ϕ \phi ϕ φ \varphi φ Phi X \myChi X χ \chi χ Chi Ψ \Psi Ψ ψ \psi ψ Psi Ω \Omega Ω ω \omega ω Omega F \myDigamma F ϝ \digamma ϝ Digamma
Appendix: Extended Cheatsheet
Polynomial
A function f : R → R f : \myReals \to \myReals f : R → R is a polynomial of degree n n n if:
where:
degree: n = 0 , 1 , 2 , 3 , … n = 0, 1, 2, 3, \dots n = 0 , 1 , 2 , 3 , … coefficients: a 0 , a 1 , … , a n − 1 , a n ∈ R a_0, a_1, \dots, a_{n-1}, a_n \in \myReals a 0 , a 1 , … , a n − 1 , a n ∈ R leading coefficient: a n ≠ 0 a_n \ne 0 a n = 0
The most common polynomials are named:
Name Form Degree 0 constant a a a Degree 1 linear a x + b a x + b a x + b Degree 2 quadratic a x 2 + b x + c a x^2 + b x + c a x 2 + b x + c Degree 3 cubic a x 3 + b x 2 + c x + d a x^3 + b x^2 + c x + d a x 3 + b x 2 + c x + d Degree 4 quartic a x 4 + b x 3 + c x 2 + d x + e a x^4 + b x^3 + c x^2 + d x + e a x 4 + b x 3 + c x 2 + d x + e
A monic polynomial is one where the leading coefficient is 1 1 1 .
Rational Function
A function f f f is a rational function if it can be written in the form:
where P P P and Q Q Q are polynomial functions, and Q Q Q is not the zero function.
The domain of f f f excludes zeroes of the denominator:
The fundamental theorem of calculus is so useful that you should just know it intuitively.
First Fundamental Theorem of Calculus
Let f f f be a continuous real-valued function defined on [ a , b ] [a, b] [ a , b ] , and let F F F be defined by:
F F F is continuous on [ a , b ] [a, b] [ a , b ] , differentiable on ( a , b ) (a, b) ( a , b ) , and has a derivative F ′ F' F ′ given by:
Second Fundamental Theorem of Calculus
Let F F F be a real-valued function on [ a , b ] [a, b] [ a , b ] , and F F F be an antiderivative of f f f on [ a , b ] [a, b] [ a , b ] . Then:
TODO: Look into this more. I’m not 100% certain on details such as whether the second fundamental theorem requires f f f to be continuous, and whether or not f f f being Riemann integrable is significant here.
Appendix: Discussion
Completing the Square
Suppose we have a quadratic function:
We want to express the same quadratic in the form:
We can expand this form, then equate coefficients:
Solving for A A A , B B B , and C C C , we get our function:
Thus, we have our general form for completing the square.
However, it can be a bit unwieldy. If we instead assume we have a monic (i.e. a = 1 a=1 a = 1 ), then:
This form is easier for me to memorize since you just remember where b 2 \memphR{\frac{b}{2}} 2 b and its square appears.
Though, if one forgets the square , you can guess the form of the outside by expanding ( x + b 2 ) 2 \parens{x + \memphR{\frac{b}{2}}}^2 ( x + 2 b ) 2 :
This something must be such that the constant doesn’t change: