simshadows

Math Scrap 3

For the circuit below, find average power and reactive power delivered to the entire load Z=R+jX\mathbf{Z} = R + jX, RR alone, and jXjX alone:

  • in terms of voltage, RR, and XX, but NOT current, and
  • in terms of current, RR, and XX, but NOT voltage.
A simple circuit.

Start by defining the voltage as the reference:

V:=Vm0° \mathbf{V} := V_m \phase{\ang{0}}

Thus, we can find the current:

1cosθ+jsinθ=1cosθ+jsinθcosθjsinθcosθjsinθ=cosθjsinθcos2θ+sin2θ=cosθjsinθ=cos(θ)+jsin(θ) \frac{1}{\cos{\theta} + j \sin{\theta}} = \frac{1}{\cos{\theta} + j \sin{\theta}} \frac{\cos{\theta} - j \sin{\theta}}{\cos{\theta} - j \sin{\theta}} = \frac{\cos{\theta} - j \sin{\theta}}{\cos^2{\theta} + \sin^2{\theta}} = \cos{\theta} - j \sin{\theta} = \cos{(-\theta)} + j \sin{(-\theta)}

I=VZ=Vm0°Zθ=VmZ1cosθ+jsinθ=VmZ(cos(θ)+jsin(θ)):=Imθ \mathbf{I} = \frac{\mathbf{V}}{\mathbf{Z}} = \frac{V_m \phase{\ang{0}}}{\abs{\mathbf{Z}} \phase{\theta}} = \frac{V_m}{\abs{\mathbf{Z}}} \frac{1}{\cos{\theta} + j \sin{\theta}} %= \frac{V_m}{\abs{\mathbf{Z}}} \frac{1}{\cos{\theta} + j \sin{\theta}} \frac{\cos{\theta} - j \sin{\theta}}{\cos{\theta} - j \sin{\theta}} %= \frac{V_m}{\abs{\mathbf{Z}}} \frac{\cos{\theta} - j \sin{\theta}}{\cos^2{\theta} + \sin^2{\theta}} %= \frac{V_m}{\abs{\mathbf{Z}}} \frac{\cos{\theta} - j \sin{\theta}}{1} = \frac{V_m}{\abs{\mathbf{Z}}} \parens{\cos{(-\theta)} + j \sin{(-\theta)}} := I_m \phase{-\theta}

From this, we get:

V=IZVm=(R+jX)Im(cosθjsinθ)Vm1cosθjsinθ=Im(R+jX)Vm(cosθ+jsinθ)=Im(R+jX)\begin{gather*} \mathbf{V} = \mathbf{I} \mathbf{Z} \\ V_m = \parens{R + jX} I_m \parens{\cos{\theta} - j \sin{\theta}} \\ V_m \frac{1}{\cos{\theta} - j \sin{\theta}} = I_m \parens{R + jX} \\ V_m \parens{\cos{\theta} + j \sin{\theta}} = I_m \parens{R + jX} \end{gather*}

I=VZIm(cosθjsinθ)=VmR+jX=VmR+jXRjXRjX=Vm(RjX)R2+X2\begin{gather*} \mathbf{I} = \frac{\mathbf{V}}{\mathbf{Z}} \\ I_m \parens{\cos{\theta} - j \sin{\theta}} = \frac{V_m}{R + jX} = \frac{V_m}{R + jX} \frac{R - jX}{R - jX} = \frac{V_m \parens{R - jX}}{R^2 + X^2} \end{gather*}

Vmcosθ=ImRVmsinθ=ImXImcosθ=VmRR2+X2Imsinθ=VmXR2+X2\begin{align*} V_m \cos{\theta} &= I_m R \\ V_m \sin{\theta} &= I_m X \\ I_m \cos{\theta} &= V_m \frac{R}{R^2 + X^2} \\ I_m \sin{\theta} &= V_m \frac{X}{R^2 + X^2} \end{align*}

Using the equations for average power and reactive power (noting that the angle θ\theta works because it is the angle in which current lags behind the voltage), we get our expressions for average and reactive power delivered to the entire load Z\mathbf{Z}:

P=12VmImcosθQ=12VmImsinθ \boxed{ P = \frac{1}{2} V_m I_m \cos{\theta} } \qquad \boxed{ Q = \frac{1}{2} V_m I_m \sin{\theta} }

PZ=12Im(ImR)PZ=12Im2R=Irms2RQZ=12Im(ImX)QZ=12Im2X=Irms2XPZ=12Vm(VmRR2+X2)PZ=12Vm2RR2+X2=Vrms2RR2+X2QZ=12Vm(VmXR2+X2)QZ=12Vm2XR2+X2=Vrms2XR2+X2\begin{alignat*}{3} P_{\mathbf{Z}} &= \frac{1}{2} I_m \parens{I_m R} & \qquad & \Longrightarrow \qquad & P_{\mathbf{Z}} &= \frac{1}{2} I_m^2 R = I_{\text{rms}}^2 R \nonumber %\label{eq:z-avg-power-as-i-r-x} \\ Q_{\mathbf{Z}} &= \frac{1}{2} I_m \parens{I_m X} & \qquad & \Longrightarrow \qquad & Q_{\mathbf{Z}} &= \frac{1}{2} I_m^2 X = I_{\text{rms}}^2 X \nonumber %\label{eq:z-rtv-power-as-i-r-x} \\ P_{\mathbf{Z}} &= \frac{1}{2} V_m \parens{V_m \frac{R}{R^2 + X^2}} & \qquad & \Longrightarrow \qquad & P_{\mathbf{Z}} &= \frac{1}{2} V_m^2 \frac{R}{R^2 + X^2} = V_{\text{rms}}^2 \frac{R}{R^2 + X^2} \tag{1} \\ Q_{\mathbf{Z}} &= \frac{1}{2} V_m \parens{V_m \frac{X}{R^2 + X^2}} & \qquad & \Longrightarrow \qquad & Q_{\mathbf{Z}} &= \frac{1}{2} V_m^2 \frac{X}{R^2 + X^2} = V_{\text{rms}}^2 \frac{X}{R^2 + X^2} \tag{2} \end{alignat*}

Now, to find the average and reactive power delivered to RR and jXjX, we first note that RR will only receive average power while jXjX will only receive reactive power:

PX=0QR=0\begin{align*} P_X &= 0 \\ Q_R &= 0 \end{align*}

Due to a common current I\mathbf{I} and conservation of AC power, we can also deduce:

PR=PZ=12Im2R=Irms2RQX=QZ=12Im2X=Irms2X\begin{align*} P_R &= P_{\mathbf{Z}} = \frac{1}{2} I_m^2 R = I_{\text{rms}}^2 R \\ Q_X &= Q_{\mathbf{Z}} = \frac{1}{2} I_m^2 X = I_{\text{rms}}^2 X \end{align*}

However, RR and jXjX experience different voltages VR:=VRmθR\mathbf{V}_R := V_{Rm} \phase{\theta_R} and VX:=VXmθX\mathbf{V}_X := V_{Xm} \phase{\theta_X}.

By voltage division:

VR=RR+jXV=VmRZ=VmRZθ=VmRR2+X2(cosθ+jsinθ)=VmRR2+X2(cos(θ)+jsin(θ))VX=jXR+jXV=VmjXZ=VmjXZθ=VmjXR2+X2(cosθ+jsinθ)=VmXR2+X2j(cos(θ)+jsin(θ))\begin{align*} \mathbf{V}_R &= \frac{R}{R + jX} \mathbf{V} = V_m \frac{R}{\mathbf{Z}} = V_m \frac{R}{\abs{\mathbf{Z}} \phase{\theta}} = V_m \frac{R}{\sqrt{R^2 + X^2} \parens{\cos{\theta} + j \sin{\theta}}} = V_m \frac{R}{\sqrt{R^2 + X^2}} \parens{\cos{(-\theta)} + j \sin{(-\theta)}} \\ \mathbf{V}_X &= \frac{jX}{R + jX} \mathbf{V} = V_m \frac{jX}{\mathbf{Z}} = V_m \frac{jX}{\abs{\mathbf{Z}} \phase{\theta}} = V_m \frac{jX}{\sqrt{R^2 + X^2} \parens{\cos{\theta} + j \sin{\theta}}} = V_m \frac{X}{\sqrt{R^2 + X^2}} j \parens{\cos{(-\theta)} + j \sin{(-\theta)}} \end{align*}

We can find the magnitudes, rearrange, then substitute into equations (1) and (2):

VRm=VmRR2+X2VRm2R=Vm2RR2+X2PR=PZ=12Vm2RR2+X2=12VRm2R=VRrms2RVXm=VmXR2+X2VXm2X=Vm2XR2+X2QX=QZ=12Vm2XR2+X2=12VXm2X=VXrms2X\begin{alignat*}{5} V_{Rm} &= V_m \frac{R}{\sqrt{R^2 + X^2}} & \qquad & \Longrightarrow \qquad & \frac{V_{Rm}^2}{R} &= V_m^2 \frac{R}{R^2 + X^2} \qquad & \Longrightarrow \qquad & P_R &= P_{\mathbf{Z}} = \frac{1}{2} V_m^2 \frac{R}{R^2 + X^2} = \frac{1}{2} \frac{V_{Rm}^2}{R} = \frac{V_{Rrms}^2}{R} \\ V_{Xm} &= V_m \frac{X}{\sqrt{R^2 + X^2}} & \qquad & \Longrightarrow \qquad & \frac{V_{Xm}^2}{X} &= V_m^2 \frac{X}{R^2 + X^2} \qquad & \Longrightarrow \qquad & Q_X &= Q_{\mathbf{Z}} = \frac{1}{2} V_m^2 \frac{X}{R^2 + X^2} = \frac{1}{2} \frac{V_{Xm}^2}{X} = \frac{V_{Xrms}^2}{X} \end{alignat*}

Thus, we have found our solutions.