Simple Series Powers
For the circuit below, find average power and reactive power delivered to the entire load Z = R + j X \mathbf{Z} = R + jX Z = R + j X , R R R alone, and j X jX j X alone:
in terms of voltage, R R R , and X X X , but NOT current, and
in terms of current, R R R , and X X X , but NOT voltage.
Start by defining the voltage as the reference:
V : = V m 0 ° \mathbf{V} := V_m \phase{\ang{0}}
V := V m 0°
Thus, we can find the current:
1 cos θ + j sin θ = 1 cos θ + j sin θ cos θ − j sin θ cos θ − j sin θ = cos θ − j sin θ cos 2 θ + sin 2 θ = cos θ − j sin θ = cos ( − θ ) + j sin ( − θ ) \frac{1}{\cos{\theta} + j \sin{\theta}}
= \frac{1}{\cos{\theta} + j \sin{\theta}} \frac{\cos{\theta} - j \sin{\theta}}{\cos{\theta} - j \sin{\theta}}
= \frac{\cos{\theta} - j \sin{\theta}}{\cos^2{\theta} + \sin^2{\theta}}
= \cos{\theta} - j \sin{\theta}
= \cos{(-\theta)} + j \sin{(-\theta)}
cos θ + j sin θ 1 = cos θ + j sin θ 1 cos θ − j sin θ cos θ − j sin θ = cos 2 θ + sin 2 θ cos θ − j sin θ = cos θ − j sin θ = cos ( − θ ) + j sin ( − θ )
I = V Z = V m 0 ° ∣ Z ∣ θ = V m ∣ Z ∣ 1 cos θ + j sin θ = V m ∣ Z ∣ ( cos ( − θ ) + j sin ( − θ ) ) : = I m − θ \mathbf{I}
= \frac{\mathbf{V}}{\mathbf{Z}}
= \frac{V_m \phase{\ang{0}}}{\abs{\mathbf{Z}} \phase{\theta}}
= \frac{V_m}{\abs{\mathbf{Z}}} \frac{1}{\cos{\theta} + j \sin{\theta}}
%= \frac{V_m}{\abs{\mathbf{Z}}} \frac{1}{\cos{\theta} + j \sin{\theta}} \frac{\cos{\theta} - j \sin{\theta}}{\cos{\theta} - j \sin{\theta}}
%= \frac{V_m}{\abs{\mathbf{Z}}} \frac{\cos{\theta} - j \sin{\theta}}{\cos^2{\theta} + \sin^2{\theta}}
%= \frac{V_m}{\abs{\mathbf{Z}}} \frac{\cos{\theta} - j \sin{\theta}}{1}
= \frac{V_m}{\abs{\mathbf{Z}}} \parens{\cos{(-\theta)} + j \sin{(-\theta)}}
:= I_m \phase{-\theta}
I = Z V = ∣ Z ∣ θ V m 0° = ∣ Z ∣ V m cos θ + j sin θ 1 = ∣ Z ∣ V m ( cos ( − θ ) + j sin ( − θ ) ) := I m − θ
From this, we get:
V = I Z V m = ( R + j X ) I m ( cos θ − j sin θ ) V m 1 cos θ − j sin θ = I m ( R + j X ) V m ( cos θ + j sin θ ) = I m ( R + j X ) \begin{gather*} \mathbf{V}
= \mathbf{I} \mathbf{Z}
\\
V_m
= \parens{R + jX} I_m \parens{\cos{\theta} - j \sin{\theta}}
\\
V_m \frac{1}{\cos{\theta} - j \sin{\theta}}
= I_m \parens{R + jX}
\\
V_m \parens{\cos{\theta} + j \sin{\theta}}
= I_m \parens{R + jX}
\end{gather*} V = IZ V m = ( R + j X ) I m ( cos θ − j sin θ ) V m cos θ − j sin θ 1 = I m ( R + j X ) V m ( cos θ + j sin θ ) = I m ( R + j X )
I = V Z I m ( cos θ − j sin θ ) = V m R + j X = V m R + j X R − j X R − j X = V m ( R − j X ) R 2 + X 2 \begin{gather*} \mathbf{I}
= \frac{\mathbf{V}}{\mathbf{Z}}
\\
I_m \parens{\cos{\theta} - j \sin{\theta}}
= \frac{V_m}{R + jX}
= \frac{V_m}{R + jX} \frac{R - jX}{R - jX}
= \frac{V_m \parens{R - jX}}{R^2 + X^2}
\end{gather*} I = Z V I m ( cos θ − j sin θ ) = R + j X V m = R + j X V m R − j X R − j X = R 2 + X 2 V m ( R − j X )
V m cos θ = I m R V m sin θ = I m X I m cos θ = V m R R 2 + X 2 I m sin θ = V m X R 2 + X 2 \begin{align*} V_m \cos{\theta} &= I_m R \\
V_m \sin{\theta} &= I_m X \\
I_m \cos{\theta} &= V_m \frac{R}{R^2 + X^2} \\
I_m \sin{\theta} &= V_m \frac{X}{R^2 + X^2}
\end{align*} V m cos θ V m sin θ I m cos θ I m sin θ = I m R = I m X = V m R 2 + X 2 R = V m R 2 + X 2 X
Using the equations for average power and reactive power (noting that the angle θ \theta θ works because it is the angle in which current lags behind the voltage), we get our expressions for average and reactive power delivered to the entire load Z \mathbf{Z} Z :
P = 1 2 V m I m cos θ Q = 1 2 V m I m sin θ \boxed{
P = \frac{1}{2} V_m I_m \cos{\theta}
}
\qquad
\boxed{
Q = \frac{1}{2} V_m I_m \sin{\theta}
}
P = 2 1 V m I m cos θ Q = 2 1 V m I m sin θ
Now, to find the average and reactive power delivered to R R R and j X jX j X , we first note that R R R will only receive average power while j X jX j X will only receive reactive power:
P X = 0 Q R = 0 \begin{align*} P_X &= 0 \\
Q_R &= 0
\end{align*} P X Q R = 0 = 0
Due to a common current I \mathbf{I} I and conservation of AC power, we can also deduce:
P R = P Z = 1 2 I m 2 R = I rms 2 R Q X = Q Z = 1 2 I m 2 X = I rms 2 X \begin{align*} P_R &= P_{\mathbf{Z}} = \frac{1}{2} I_m^2 R = I_{\text{rms}}^2 R \\
Q_X &= Q_{\mathbf{Z}} = \frac{1}{2} I_m^2 X = I_{\text{rms}}^2 X
\end{align*} P R Q X = P Z = 2 1 I m 2 R = I rms 2 R = Q Z = 2 1 I m 2 X = I rms 2 X
However, R R R and j X jX j X experience different voltages V R : = V R m θ R \mathbf{V}_R := V_{Rm} \phase{\theta_R} V R := V R m θ R and V X : = V X m θ X \mathbf{V}_X := V_{Xm} \phase{\theta_X} V X := V X m θ X .
By voltage division:
V R = R R + j X V = V m R Z = V m R ∣ Z ∣ θ = V m R R 2 + X 2 ( cos θ + j sin θ ) = V m R R 2 + X 2 ( cos ( − θ ) + j sin ( − θ ) ) V X = j X R + j X V = V m j X Z = V m j X ∣ Z ∣ θ = V m j X R 2 + X 2 ( cos θ + j sin θ ) = V m X R 2 + X 2 j ( cos ( − θ ) + j sin ( − θ ) ) \begin{align*} \mathbf{V}_R
&= \frac{R}{R + jX} \mathbf{V}
= V_m \frac{R}{\mathbf{Z}}
= V_m \frac{R}{\abs{\mathbf{Z}} \phase{\theta}}
= V_m \frac{R}{\sqrt{R^2 + X^2} \parens{\cos{\theta} + j \sin{\theta}}}
= V_m \frac{R}{\sqrt{R^2 + X^2}} \parens{\cos{(-\theta)} + j \sin{(-\theta)}}
\\
\mathbf{V}_X
&= \frac{jX}{R + jX} \mathbf{V}
= V_m \frac{jX}{\mathbf{Z}}
= V_m \frac{jX}{\abs{\mathbf{Z}} \phase{\theta}}
= V_m \frac{jX}{\sqrt{R^2 + X^2} \parens{\cos{\theta} + j \sin{\theta}}}
= V_m \frac{X}{\sqrt{R^2 + X^2}} j \parens{\cos{(-\theta)} + j \sin{(-\theta)}}
\end{align*} V R V X = R + j X R V = V m Z R = V m ∣ Z ∣ θ R = V m R 2 + X 2 ( cos θ + j sin θ ) R = V m R 2 + X 2 R ( cos ( − θ ) + j sin ( − θ ) ) = R + j X j X V = V m Z j X = V m ∣ Z ∣ θ j X = V m R 2 + X 2 ( cos θ + j sin θ ) j X = V m R 2 + X 2 X j ( cos ( − θ ) + j sin ( − θ ) )
We can find the magnitudes, rearrange, then substitute into equations (1) and (2) :
Thus, we have found our solutions.