sech Integral
Considering:
∫sechaxdx=a1tan−1(sinhax)=a2tan−1(tanh2ax)Prove that:
a1tan−1(sinhax)=a2tan−1(tanh2ax)
Let us use the following identities for this proof:
tan−1x=2tan−1(1+1+x2x)sinhx=2ex−e−x=2exe2x−1tanhx=ex+e−xex−e−x=e2x+1e2x−1
We start by rewriting LHS:
LHS=a1tan−1(sinhax)=a2tan−1(1+1+sinh2axsinhax)
Now, to finish the proof, we will now show the following to be true:
tanh2ax=1+1+sinh2axsinhax
To simplify further working, we will change the variable:
tanhx=1+1+sinh22xsinh2x
Starting with the RHS:
RHS=1+1+(2e2xe4x−1)22e2xe4x−1=2e2x(1+1+4e4xe8x−2e4x+1)e4x−1=2e2x(1+4e4xe8x−2e4x+1+4e4x)e4x−1=2e2x(1+4e4xe8x+2e4x+1)e4x−1=2e2x(1+4e4x(e4x+1)2)e4x−1=2e2x(1+2e2xe4x+1)e4x−1=2e2x+e4x+1e4x−1=(e2x+1)2(e2x−1)(e2x+1)=e2x+1e2x−1=tanhx=LHS
as required.